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Let Sy:={zeC: |[Imz| <f}. For 2n-periodic functions which are analytic in S,
with p-integrable boundary values, we construct an optimal method of recovery
of f'(£), €Sy, using information about the values f(x,), .., f(x,), x;€[0, 2n).
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INTRODUCTION

Let X and Y be linear spaces, L a linear functional on X, and I: X - Y
a linear operator (which is usually called an information operator).
Suppose that W < X. Consider the problem of the optimal recovery of Lx,
x e W, on the basis of the information Ix. The value

e(L, W, I) :=inf sup |Lx — F(Ix)]|, (1)

F xeWw

where F: Y — C are any functionals (not necessarily linear or continuous)
is called the intrinsic error. A functional F, for which

sup |Lx — Fy(Ix)| =e(L, W, I)

xeW

is said to be an optimal algorithm or optimal method.
General settings of recovery problems can be found in [2-4, 13].
Denote by #, 5, 1 <p< oo, the space of all 2z-periodic functions f,
which are analytic in S;:={zeC: |Im z| <} and satisfy
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1 2n 1/p
Iflle, = sup <j0 (If(l+i17)|"+If(t—in)l”)dt> <,

os<n<p 4n

I<p<oo,

1S, = sup |(2)] < 0.

zeS/;

Set

Hy pi={1 €ty 5 1f |, , <1}

We will consider the problem (1) for W=H,, 5, Lf =/'(), (€ Sy, and
If: (f(xl)a () f(xn))n

where x; are distinct points from T :=[0, 27). In this case we denote the
intrinsic error (1) by €'(¢, H,, 4, I). From the well-known Smolyak’s formula
(the complex version of this result was proved in Osipenko [5]) it follows
that

€' (& Hy 5, I)= sup [f'(Q)]. (2)
SeH, g
If=0

For the unit ball /, of the Hardy space of nonperiodic functions analytic
in the unit disk the analogous problem of optimal recovery was solved in
Micchelli, Rivlin [3,4] (p=o00) and Osipenko, Stessin [8] (1 <p< w0).
The problem of recovery of f®(&) in H » was considered in Osipenko [6].
An interesting extremal problem concerning minimization of the intrinsic
error by choosing points xi, ..., x,, was studied by Rivlin et al. [ 12]. Several
results relating to optimal recovery of f'(¢), f'e H,, from inaccurate values
of f can be found in Osipenko, Stessin [9, 10]. An optimal method of
recovery of f(¢), f€ H, z, was recently obtained by Osipenko, Wilderotter
[11].

In Section 1 we construct an optimal method of recovery of f’(¢&),
feH, ; and calculate the appropriate intrinsic error. In Section2 we
examine the intrinsic error of optimal recovery for the classes H, z and
H, 5 in the case where the values of functions are known at equidistant
nodes.

1. OPTIMAL METHOD OF RECOVERY

Extremal problems for periodic analytic functions are often solved in
terms of elliptic functions (see, for example, [ 7, 11]). We shall recall some
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notions from this theory. The Jacobi elliptic function w =sn(z, k) is defined
by the equation

Zsz dt

JA=2) 1=k
We shall also deal with the elliptic functions
en(z, k) :=./1 —sn?(z, k), dn(z, k) :=./1 —k?sn?%(z, k)

(cn(0, k) =dn(0, k) =1), and complete elliptic integrals of the first kind
with moduli k£ and k' :=./1—k*

fl dt X ':Jl dt
o J(1=2)(1 =k e S =) (1=K?P)

K:=

We always assume that the modulus & is defined from the equation

K’ _
2K

B.
It can be shown (see, for example, Akhiezer [1]) that

m=0 €
14252 e~

[ee) —2pm(m+1) \ 2
k=4e‘ﬁ< >

Henceforth we shall not note the dependence of the Jacobi elliptic functions
on the modulus k.

In what follows all expressions with p for p = oo are considered in their
limits as p — oo.

Set

r K " K
Wz):=k"? ] sn=(z—x;), w;(z):=]] sn=(z—x,).
e 0 Pl T
/=t S#}'
Assume that £ ¢ {x,, .., x,} and consider the equation

_z W)
K we)

+k2p;23n(y+K)> (3)

sny <sn(y+K)

Denote the function in the left hand side of (3) by s(y). Since s(y) is a
continuous function in (—K, K) and s(y) > + o0 as y —» + K there exists a
solution of (3) yo €(—K, K). For € {x|, .., x,} put yo=K.
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Set x¢:=¢— 7y /K,

w(z):zksng(z—é) sng(z—f—i—n),
T T

1= {Ce T 1 <2 ol

2kK
pm W)
p—1 2kK W(&)’
W(&) sign W'(S)
b:= 2
i Y P2 e
sz| t9] +/<MW(5)> i ©)
_W(xo),
1’
w(z)+b
l/lé(Z) — 1+bW(Z)’
1
1+bw (fsn z—x0> ’
THEOREM 1. For all 1 <p < oo the method

where for & #x;

387

TO :=—[|—\T1,

EeT,,n=2m,

teT,, n=2m,

n=2m-—1,
teT,, n=2m,

teTy,n=2m,

n=2m-—1.

K
ué(xj)(l + bw(xj))(z(p* D)p qn@e—-1)p _— (f _ Xj)

(&) = ma(&) T
J - _an/2+1K K 4
wj(xj) sn® . (¢ _xj)
¢/(x) = ZJE;%;
and
2kK?* W1
2 (é)’ f¢{x1" 9-xn}a
. T “f;(f)
&) = 2L+ D21 g2

72wj(xj)7 é_xja 1)' ’na

T
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is an optimal method of recovery on the class H, 5. Moreover, the following
equality holds

(p+1)/p
k<2K> [W()] (1+b2)(p—1)/11’ f¢{x1,..., X,,},

, 2\« lug(<)|
(& Hy g 1) =4 tins1)2] (p+1)/p
k 2K
72 7_[ |wj(xj)|’ é=x1

Proof. The function

v(z) :=\/l;sn§z

is analytic in S;. Moreover, v(z+2n)= —v(z) and [v(x+if)| =1 for all
xeR. Thus W(z)= W~Y(z) for z € 0S. Using the definition of b, it can be
shown that be[ —1, 1]. Consider the function

_w(z)+b W(z)
8(2):= 1+ bw(z) usz)

(14 bw(z))¥? dn?? % (z—=©&).

Since dn(K/r) z and w(z) are 2n-periodic, [w(z)| <1, ze€ Sy, and dn(K/x) z
does not vanish in Sg, ge A, 4.
For feH, sand 1 <p < o0 set

P

T dn

+g(x—ip) |g(x —ip)|?=2 f(x —ip)) dx. (4)

[T G B e+ 17 s+ )

Using the properties of elliptic functions, we have for all xe R

_ cng(xiiﬁ)
K . 4
dn—(xtif)=+i——. (5)

d sng(xiiﬂ)
T

The element of integration in Jf'is a 2z-periodic function. Consequently, we
can rewrite Jf in the form
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&) udz)(1+ bw(z)) @ D)
Jf_ 47'(1 J;w W(Z) W(Z)
K Cng(z—é)
x dn@®@—2/p = (z—&) A £2) ds
sn—(z2—¢)

) a(é) ué(z)(l + bw(z))(z“’* /P qn@le—=D)/r g(z _ f)

47Ti T,

X f(z)dz, (6)
kW(z) s — (<)

where I, is the boundary of rectangle —¢ <Rez<2n—¢, |Imz| <f, and
¢ is such that & xq, .., x,, lie inside this rectangle. Assume that &¢
{X1{, ., X3,}. By the residue theorem

=10+ (&)= ) Q) f(x)),

where

!

o((f) (Z _ 5)2 ué(z)(l + bw(z))(z(l’_lw" dn@@—-1)/p g(z _ g)
€= m

Wiz 2N &)
T

LA <“:(2)(1 + bw(z))(z(l’—l))/p>/

ug(&) W(z) i

It is not hard to check that b is defined from the condition C =0. Thus we
have

Jf =18 - (7)

I s
)
>
e
s
=%
X
NI

From (4) and Holder’s inequality

1 < 1&gl !

Hence

& Hy 5 D)< 12(E)] g5 !
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On the other hand for g, :=g/\|g|\% , we have Jg,= go(&). Using equality
(2), we obtain ’

¢ Hy o 1) = 8o(O)] = g0l = (&) g5
Thus
¢ (& Hy g 1) =1a(6)] g%

To calculate HgH%,; ; substitute f(z) = g(z) in (6)

(w(z) +b)(1 + bw(z)) dn? X (z—9&)
a(&) T

477,'i I

dz

&) gl , =
' ksnzg(z—f)

T

2K(l+b2) (8)

=a($)

(we omit here some technical details concerned with the application of the
residue theorem). Consequently,

T 1/p
lelr,, = (55 (1+0%)

and

k<2K>(p+1)/P |W(f)| (1 +b2)(p_1)/p_

(e Hr D=3 @)

2
If £=x;, then b=0 and g(z) =w(z) W(z) u; '(z) dn*” (K/n)(z — x,). In
this case the assertion of the theorem can be obtained by the same scheme.
For p = oo consider the integral

T

«(<)

1= [ GO B o+ ) Sx+iB)

+g(x —if) p(x —if) f(x—ip)) dx,
where

2

@(z)=|(1+bw(z)) dng(z—f) .
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The representation (7) follows from (5) and the residue theorem. We have

1< 1] @]l 2, ,-

Taking in account that ¢(z) >0, we obtain

1" (O] =gl =) @l ,-

Hence

(& Hy g I) =) |9, -

Using the residue theorem, by analogy with (8) we obtain

10l == (1457, 1

2K

Let us consider our problem in the case when ¢ =0 and

If =1,/ :=(f(=h), f(h),  he(0, )

In other words we wish to construct an optimal formula of numerical
differentiation at the point & =0, using the information about values of
function at the points =+ /.

In this particular case we have

K K K
Wz)=ksn—(z+h)sn—(z=h),  W0)=—ksn®—h W (0)=0.

Moreover, 0 T} and b=0. Thus we obtain that an optimal method has
the form

Kt —f(=h) dn@>—1)/p K h

2K
& sn—~h d
i1

and

2/ (p+1)/p K K\Gp+1/p
¢(0, H, 5, 1)) = K <K> sn2 = h=k22VP <> h2 + O(h*).
T

2\ z T
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2. OPTIMAL RECOVERY USING AN EQUIDISTANT
SYSTEM OF POINTS

For optimal recovery of periodic functions the most natural system of
points is an equidistant system. We will estimate the error of optimal
recovery of the derivative from the information

If =12 = (f(1)), o [(13,)),

where
. T .
t]‘.)z(]—l);, j=1,..2n

Set

e’Zn(Hp,ﬁ) ‘=Ssup el(éa Hp,ﬂ) I(2n))-
EeT

THEOREM 2. For all f>0

2nA
ehH. g) =/ 2L 2ne b + O(ne =),

T
2K 2nA 2K
e'2n(H2,ﬂ) = TT: 7271@_’3”"‘ O(ne_sﬁ"),

2 Zoo Oe—4ﬂnm(m+l) 2

_ —2pn m=

A=4de <1+220® e_4ﬂnm2>
m=1

where

and A is the complete elliptic integral of the first kind for modulus .

Proof. Using the first principal transform of elliptic functions of degree
2n (see [1]), we find

a\ L (K 2j—1
W<Zzn>—k nSH(nZ mn K>

j=1
oK 2j—1 K 2j—1
=k [Ton (Som 2 k) (B K
(1) j]:[lsn<nz Ko 72+ 2 k)
2j—1
" 2 ]2n K—sn?2=z
H 2j— K
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Hence

Wi(z)= —ﬂ sn <2nn/1 z, /1>.

In view of the equalities

%sn(t, J)=cn(t, A) dn(t, 1) =\/(1 —sn?(¢t, A))(1 — A% sn%(t, 1)),

from Theorem 1 we obtain
k 72K\ +Pp/p
el2n(Hp,,B) = Ssup o <K> ﬂ ¢p(s)s
se[0,1] 2\ &

where

2(1 —s2)(1 = A2s2)\(P—V)/p
s{ 1+ ra ( N ) , seS_,
_1 S2 P
d)p(s): 2

Ky (p—=1)/p
y(S)<l+y2(S)> s SG[O, 1]\Sp
2
":ZTA( S”:{SE[O’1]:a2(1—s2)(1—zzs2)<<p;1> Sz}a
V<S)=a/(l—sz)(1—12s2)+/a2(1_s2)(1—;ﬁs2)—p;2sz.

Let us begin with the case p =2. It is easy to check that

®y(5) = /5> + 4a*(1 —s2)(1 — J25%).

From properties of the first principal transformations of elliptic functions
of degree 2n it follows that

> 1. (9)

Hence 2a>1 and

D3(s) <s*+4a*(1 —s%) <4a®
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This estimate is attained for s =0. Thus

C(H ) 2K ~2nA

e = | —Ji—.
2n\44p, B 7 7

The asymptotic equality follows from the equations

A=2e P4 O(e ),

A=Z4 0(e=4m).
2
Let p=o0. It can be easily shown that S, =(s* 1] where s* is the
unique solution of the equation
a*(1—s%)(1 —2%%) =5~

We have

2a /(1 —5?)(1—2%?), se[0,s*],
P o(s) = 2, (1=s)(1 =A%)

s+a , se(s* 1].
s

Since the function

, (1—=52)(1—2%2)
s

F(s):=s+a

is convex for s€ (0, 1) we obtain

max F(s) =max{F(s*¥), F(1)} =max{® (s*), 1}.

se[s* 1]
The function @ _(s) decreases while s e [0, s*]. Consequently,

max @ (s)=max{®(0),1} =2a. |

se[0,1]
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